2021新书Python程序设计 人工智能案例实践 Python编程人工智能基本描述统计集中趋势和分散度量模拟深度学习自然语言处理书籍
贝壳书屋

2021新书Python程序设计 人工智能案例实践 Python编程人工智能基本描述统计集中趋势和分散度量模拟深度学习自然语言处理书籍 电子书下载

admin A+ A- 该资源由用户: 冬马依彤 上传  举报不良内容

书名:2021新书Python程序设计 人工智能案例实践 Python编程人工智能基本描述统计集中趋势和分散度量模拟深度学习自然语言处理书籍

2021新书Python程序设计 人工智能案例实践 Python编程人工智能基本描述统计集中趋势和分散度量模拟深度学习自然语言处理书籍.jpg

通过学习本书提供的500多个实际示例,读者将学会使用交互式IPython解释器和Jupyter Notebook并快速掌握Python编码方法。在学习完第1~5章的Python基础知识以及第6和7章的一些关键内容之后,读者将能够处理第11~16章中有关人工智能案例的重要实操内容,包括自然语言处理,用于情感分析的Twitter数据挖掘,使用IBM Watson 的认知计算,利用分类和回归进行的有监督机器学习,通过聚类进行的无监督机器学习,基于深度学习和卷积神经网络的计算机视觉,基于递归神经网络的深度学习,基于Hadoop、Spark和NoSQL数据库的大数据处理,物联网等。读者还将直接或间接使用基于云的服务,如Twitter、Google Translate、IBM Watson、Microsoft Azure、OpenMapQuest、PubNub等。通过学习本书提供的500多个实际示例,读者将学会使用交互式IPython解释器和Jupyter Notebook并快速掌握Python编码方法。在学习完第1~5章的Python基础知识以及第6和7章的一些关键内容之后,读者将能够处理第11~16章中有关人工智能案例的重要实操内容,包括自然语言处理,用于情感分析的Twitter数据挖掘,使用IBM Watson 的认知计算,利用分类和回归进行的有监督机器学习,通过聚类进行的无监督机器学习,基于深度学习和卷积神经网络的计算机视觉,基于递归神经网络的深度学习,基于Hadoop、Spark和NoSQL数据库的大数据处理,物联网等。读者还将直接或间接使用基于云的服务,如Twitter、Google Translate、IBM Watson、Microsoft Azure、OpenMapQuest、PubNub等。通过学习本书提供的500多个实际示例,读者将学会使用交互式IPython解释器和Jupyter Notebook并快速掌握Python编码方法。在学习完第1~5章的Python基础知识以及第6和7章的一些关键内容之后,读者将能够处理第11~16章中有关人工智能案例的重要实操内容,包括自然语言处理,用于情感分析的Twitter数据挖掘,使用IBM Watson 的认知计算,利用分类和回归进行的有监督机器学习,通过聚类进行的无监督机器学习,基于深度学习和卷积神经网络的计算机视觉,基于递归神经网络的深度学习,基于Hadoop、Spark和NoSQL数据库的大数据处理,物联网等。读者还将直接或间接使用基于云的服务,如Twitter、Google Translate、IBM Watson、Microsoft Azure、OpenMapQuest、PubNub等。通过学习本书提供的500多个实际示例,读者将学会使用交互式IPython解释器和Jupyter Notebook并快速掌握Python编码方法。在学习完第1~5章的Python基础知识以及第6和7章的一些关键内容之后,读者将能够处理第11~16章中有关人工智能案例的重要实操内容,包括自然语言处理,用于情感分析的Twitter数据挖掘,使用IBM Watson 的认知计算,利用分类和回归进行的有监督机器学习,通过聚类进行的无监督机器学习,基于深度学习和卷积神经网络的计算机视觉,基于递归神经网络的深度学习,基于Hadoop、Spark和NoSQL数据库的大数据处理,物联网等。读者还将直接或间接使用基于云的服务,如Twitter、Google Translate、IBM Watson、Microsoft Azure、OpenMapQuest、PubNub等。通过学习本书提供的500多个实际示例,读者将学会使用交互式IPython解释器和Jupyter Notebook并快速掌握Python编码方法。在学习完第1~5章的Python基础知识以及第6和7章的一些关键内容之后,读者将能够处理第11~16章中有关人工智能案例的重要实操内容,包括自然语言处理,用于情感分析的Twitter数据挖掘,使用IBM Watson 的认知计算,利用分类和回归进行的有监督机器学习,通过聚类进行的无监督机器学习,基于深度学习和卷积神经网络的计算机视觉,基于递归神经网络的深度学习,基于Hadoop、Spark和NoSQL数据库的大数据处理,物联网等。读者还将直接或间接使用基于云的服务,如Twitter、Google Translate、IBM Watson、Microsoft Azure、OpenMapQuest、PubNub等。

尊敬的读者:
欢迎您访问我们的网站。本站的初衷是为大家提供一个共享学习资料、交换知识的平台。每位用户都可以将文件上传至网盘并分享。
然而,随着用户上传的资料增多,我们发现部分不宜或版权问题的书籍被分享到了本站。 为此,我们已经关闭了分享入口,并进行了多次书籍审查,但仍有部分内容未能彻底审查到位。
在此,我们恳请广大读者与我们共同监督,如发现任何不宜内容,请 点击此处 进行举报,我们会第一时间处理并下架相关内容。
希望我们能共建一个文明社区!感谢您的理解与支持!

直接下载

贝壳书屋 © All Rights Reserved.  
关于我们| 联系我们| 留言|