《推荐系统实践》项亮 电子书下载
项亮毕业于中国科学技术大学和中国科学院自动化研究所。他的研究方向是机器学习和推荐系统。他目前在北京Hulu软件技术开发有限公司工作,从事视频推荐研究和开发。 2009年,他参加了Netflix奖推荐系统竞赛,并获得了该组的第二名。同年,他创立了Resys China推荐系统社区。
随着信息技术和互联网的发展,人们已经从信息不足的时代逐渐进入信息超载的时代。在这个时代,信息消费者和信息生产者都面临着巨大的挑战:对于信息消费者来说,很难从大量信息中找到感兴趣的信息;对于信息生产者来说,让公司制作的信息从人群中脱颖而出并受到用户的关注也很困难。推荐系统是解决这一矛盾的重要工具。推荐系统的任务是联系用户和信息,一方面帮助用户找到对他们有价值的信息,另一方面使信息能够呈现给对其感兴趣的用户,从而实现信息消费者和信息生产者的双赢局面。
第1章 好的推荐系统 1
1.1 什么是推荐系统 1
1.2 个性化推荐系统的应用 4
1.2.1 电子商务 4
1.2.2 电影和视频网站 8
1.2.3 个性化音乐网络电台 10
1.2.4 社交网络 12
1.2.5 个性化阅读 15
1.2.6 基于位置的服务 16
1.2.7 个性化邮件 17
1.2.8 个性化广告 18
1.3 推荐系统评测 19
1.3.1 推荐系统实验方法 20
1.3.2 评测指标 23
1.3.3 评测维度 34
第2章 利用用户行为数据 35
2.1 用户行为数据简介 36
2.2 用户行为分析 39
2.2.1 用户活跃度和物品流行度的分布 39
2.2.2 用户活跃度和物品流行度的关系 41
2.3 实验设计和算法评测 41
2.3.1 数据集 42
2.3.2 实验设计 42
2.3.3 评测指标 42
2.4 基于邻域的算法 44
2.4.1 基于用户的协同过滤算法 44
2.4.2 基于物品的协同过滤算法 51
2.4.3 UserCF和ItemCF的综合比较 59
2.5 隐语义模型 64
2.5.1 基础算法 64
2.5.2 基于LFM的实际系统的例子 70
2.5.3 LFM和基于邻域的方法的比较 72
2.6 基于图的模型 73
2.6.1 用户行为数据的二分图表示 73
2.6.2 基于图的推荐算法 73
第3章 推荐系统冷启动问题 78
3.1 冷启动问题简介 78
3.2 利用用户注册信息 79
3.3 选择合适的物品启动用户的兴趣 85
3.4 利用物品的内容信息 89
3.5 发挥专家的作用 94
第4章 利用用户标签数据 96
4.1 UGC标签系统的代表应用 97
4.1.1 Delicious 97
4.1.2 CiteULike 98
4.1.3 Last.fm 98
4.1.4 豆瓣 99
4.1.5 Hulu 99
4.2 标签系统中的推荐问题 100
4.2.1 用户为什么进行标注 100
4.2.2 用户如何打标签 101
4.2.3 用户打什么样的标签 102
4.3 基于标签的推荐系统 103
4.3.1 实验设置 104
4.3.2 一个最简单的算法 105
4.3.3 算法的改进 107
4.3.4 基于图的推荐算法 110
4.3.5 基于标签的推荐解释 112
4.4 给用户推荐标签 115
4.4.1 为什么要给用户推荐标签 115
4.4.2 如何给用户推荐标签 115
4.4.3 实验设置 116
4.4.4 基于图的标签推荐算法 119
4.5 扩展阅读 119
第5章 利用上下文信息 121
5.1 时间上下文信息 122
5.1.1 时间效应简介 122
5.1.2 时间效应举例 123
5.1.3 系统时间特性的分析 125
5.1.4 推荐系统的实时性 127
5.1.5 推荐算法的时间多样性 128
5.1.6 时间上下文推荐算法 130
5.1.7 时间段图模型 134
5.1.8 离线实验 136
5.2 地点上下文信息 139
5.3 扩展阅读 143
第6章 利用社交网络数据 144
6.1 获取社交网络数据的途径 144
6.1.1 电子邮件 145
6.1.2 用户注册信息 146
6.1.3 用户的位置数据 146
6.1.4 论坛和讨论组 146
6.1.5 即时聊天工具 147
6.1.6 社交网站 147
6.2 社交网络数据简介 148社交网络数据中的长尾分布 149
6.3 基于社交网络的推荐 150
6.3.1 基于邻域的社会化推荐算法 151
6.3.2 基于图的社会化推荐算法 152
6.3.3 实际系统中的社会化推荐算法 153
6.3.4 社会化推荐系统和协同过滤推荐系统 155
6.3.5 信息流推荐 156
6.4 给用户推荐好友 159
6.4.1 基于内容的匹配 161
6.4.2 基于共同兴趣的好友推荐 161
6.4.3 基于社交网络图的好友推荐 161
6.4.4 基于用户调查的好友推荐算法对比 164
6.5 扩展阅读 165
第7章 推荐系统实例 166
7.1 外围架构 166
7.2 推荐系统架构 167
7.3 推荐引擎的架构 171
7.3.1 生成用户特征向量 172
7.3.2 特征?物品相关推荐 173
7.3.3 过滤模块 174
7.3.4 排名模块 174
7.4 扩展阅读 178
第8章 评分预测问题 179
8.1 离线实验方法 180
8.2 评分预测算法 180
8.2.1 平均值 180
8.2.2 基于邻域的方法 184
8.2.3 隐语义模型与矩阵分解模型 186
8.2.4 加入时间信息 192
8.2.5 模型融合 193
8.2.6 Netflix Prize的相关实验结果 195
后记 196
尊敬的读者:
欢迎您访问我们的网站。本站的初衷是为大家提供一个共享学习资料、交换知识的平台。每位用户都可以将文件上传至网盘并分享。
然而,随着用户上传的资料增多,我们发现部分不宜或版权问题的书籍被分享到了本站。
为此,我们已经关闭了分享入口,并进行了多次书籍审查,但仍有部分内容未能彻底审查到位。
在此,我们恳请广大读者与我们共同监督,如发现任何不宜内容,请 点击此处 进行举报,我们会第一时间处理并下架相关内容。
希望我们能共建一个文明社区!感谢您的理解与支持!
猜你喜欢
- 《常青:如何持久吸引客户》诺亚.弗雷明文字版 电子书下载
- 《人的境况》汉娜·阿伦特 电子书下载
- 《时间机器》 赫伯特・乔治・威尔斯文字版 电子书下载
- 《高绩效时间管控:让效率翻倍》荞麦 文字版 电子书下载
- 《价值投资:从格雷厄姆到巴菲特》格林威尔全译修订版 电子书下载
- 《蚂蚁金服:从支付宝到新金融生态圈》廉薇 文字版 电子书下载
- 《心理学图解入门》 吴金岭珍藏版 电子书下载
- 《爱恨不如期:遗世独立张爱玲》月下文字版 电子书下载
- 《孽子 (白先勇作品集2)》白先勇 电子书下载
- 《2000个应该知道的文化常识》杨谷怀 电子书下载
- 《如何才能没压力:遇见内心平衡的自己》马克·克洛普利 电子书下载
- 《我们最幸福》芭芭拉・德米克中文版 电子书下载